

NCE Series

Non-Cycling Refrigerated Compressed Air Dryers11-64 SCFM

HTB Hi-Temp

Non-Cycling Refrigerated Compressed Air Dryers For High Inlet Temperature Applications 15-100 SCFM

Uses Environmentally Friendly Refrigerant

ZEKS

Meets The Needs Of Compressed Air Users

Compressed air is used commonly for powering tools and equipment, in production and finishing processes and to control valves and instruments.

Water, compressor lubricant aerosols, and air-borne particulates can damage tools, increase maintenance requirements or spoil finished product. NCE and HTB Series™ Non-Cycling Refrigerated Dryers from ZEKS remove harmful moisture and contaminants from compressed air to guard against process waste and spoilage, and production downtime.

NCE Series

With a comprehensive list of standard features and innovative operation, NCE Series non-cycling dryers deliver value and performance in a compact design.

- Integral Heat Exchanger/Separator Compact and corrosion resistant, this unique assembly provides efficient air drying while minimizing dryer footprint.
- VSD Fan Operation Variable speed condenser fan control modulates fan speed in relation to dryer load.
 Slowing the speed of the fan under low load conditions saves energy. Additionally, long-term reliability is improved because fewer components are required within the refrigeration circuit.
- Microprocessor Control Dryer functions and drain
 operation are microprocessorcontrolled. LED display provides
 visual indication of dryer
 operating status. A touchpad user interface permits
 easy manipulation of all dryer parameters.

With five models available in capacities from 11-64 SCFM, NCE Series dryers are ideally suited to air systems with 2.5-10 compressor horsepower.

HTB Hi-Temp

HTB Hi-Temp dryers are specifically engineered to provide efficient air treatment for high-temperature process air applications. Inlet air temperature has a significant effect on air dryer performance. Raising the inlet temperature by 20°F approximately doubles the amount of moisture in the air stream. HTB Hi-Temp dryers have unique features that address the demands of high temperature compressed air for economical delivery of clean, dry air including:

- Integrated Air-Cooled Aftercooler Efficiently lowers inlet air temperature
- Air-to-Air Exchanger Economically cools air for energy savings
- Internal Coalescing Filter Enhances separation of air and condensate

HTB Series dryers eliminate the need for separate aftercooler, separator and drain - only one piece of air treatment equipment to purchase and maintain.

Six HTB models, from 15-100 SCFM, make selection easy. All are fully-featured, requiring only connection within the compressed air system and utility hookup.

NCE and HTB Standard Features

- Integral Heat Exchanger/Separator
- VSD Condenser Fan Control
- Fully Hermetic Refrigeration System
- NEMA 12 Electrical Design
- Environmentally Friendly Refrigerant
- Precooler/Reheater (Air-to-Air Exchanger)
- Air-cooled Aftercooler (HTB only)
- Built-in Coalescing Filter (HTB only)
- Microprocessor Control with Touch Pad
 - Illuminated compressor-running indicator
 - Condensate drain open indicator
 - Indication of full- or variable speed fan operation
 - Fault message indication
 - Drain timing/Drain test interface
- Reliable Electric Solenoid Drain
- Galvanized Internal Structural Components
- Powder-Coated Cabinet
- Compact Design/Quiet Operation
- UL Listed

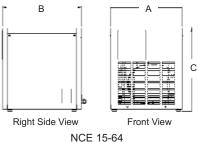
Available Options

- Prefilter Particulate (Field installed)
- Gauge Package (Field installed)
 - Inlet or outlet air pressure and temperature
- 3-Valve Bypass (Field installed)

All NCE and HTB Models Use Environmentally Friendly

R-134a Refrigerant

NCE Series™ Technical Specifications

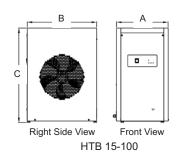

MODEL	11NCE	15NCE	25NCE	32NCE	64NCE	
Capacity SCFM	11	15	25	32	64	
Refrigerant	R-134a	R134a	R-134a	R-134a	R-134a	
(A) Width in.	12	15 3/8	15 3/8	15 3/8	16 9/16	
(B) Depth in.	14 3/16	17	17	17	20 5/16	
(C) Height in.	16 1/16	17 3/8	17 3/8	17 3/8	21 11/16	
Weight lb.	40	40	78	62	78	
Air Connection In/Out	3/8" FPT	1/2" FPT	1/2" FPT	1/2" FPT	3/4" FPT	
Condensate Drain	6 mm					
Refrig. Comp. HP	1/10	1/10	1/6	1/4	1/2	
Max. Work. Press. psig	203	203	203	203	203	
Operating KW*	.22	.22	.27	.49	.66	
Voltage	115-1-60	115-1-60	115-1-60	115-1-60	115-1-60	

Right Side View Front View NCE 11

Performance data obtained as per ISO 7183, Table 2, Option A2. Rated at 100 psig, 100°F inlet air, 100°F ambient air.

11-64 NCE Correction Factors for other-than-standard conditions.

Inlet Air	psi	70	85	100	115	130	145	160	175	190	205
Pressure	P-Factor	0.82	0.93	1	1.07	1.12	1.16	1.19	1.21	1.23	1.25
Air Inlet Temperature	٥F	80	90	100	110	120	130	140			
	T-Factor	1.3	1.18	1	8.0	0.6	0.42	0.25			
Ambient Air Temperature	°F	80	90	100	105	110	122				
	A-Factor	1.1	1.05	1	0.93	0.83	0.65				


Calculation: Corrected Flow = User Flow Rate ÷ P-Factor ÷ T-Factor ÷ A-Factor. Select dryer that meets or exceeds corrected flow capacity.

Example: User's Conditions: 30 SCFM/ / 85 psig / 110°F inlet / 105°F ambient

Solution: Corrected Flow = 30 SCFM \div .93 \div .8 \div .93 = 43.3 SCFM. Size to model 64 NCE.

Hi-Temp™ Technical Specifications

MODEL	HTB015	HTB025	HTB035	HTB060	HTB080	HTB100
Capacity SCFM	15	25	35	60	82	100
Refrigerant	R-134a	R134a	R-134a	R-134a	R-134a	R-134a
(A) Width in.	15 3/16	15 3/16	15 3/16	16 9/16	16 9/16	16 9/16
(B) Depth in.	19 11/16	19 11/16	19 11/16	22 5/16	22 5/16	22 5/16
(C) Height in.	25 5/8	25 5/8	25 5/8	30 3/8	30 3/8	30 3/8
Weight lb.	84	86	86	126	137	148
Air Connection In/Out	1/2" NPT	1/2" NPT	1/2" NPT	3/4" NPT	3/4" NPT	1" NPT
Condensate Drain	6 mm					
Refrig. Comp. HP	1/6	1/4	1/4	1/2	1/2	2/3
Max. Work. Press. psig	203	203	203	203	203	203
Operating KW*	.27	.49	.49	.66	.75	1.14
Voltage	115-1-60	115-1-60	115-1-60	115-1-60	115-1-60	115-1-60

Performance data obtained as per ISO 7183, Table 2, Option A2.

Rated at 100 psig, 150°F inlet air, 95°F ambient air.

HTB015-HTB100 Correction Factors for other-than-standard conditions.

Inlet Air	psi	70	85	100	115	130	145	160	175	190	205
Pressure	P-Factor	0.82	0.93	1	1.07	1.12	1.16	1.19	1.21	1.23	1.25
Air Inlet	٥F	120	140	150	160	170	180	200			
Temperature	T-Factor	1.25	1.1	1	0.93	0.83	0.75	0.5			
Ambient Air	°F	80	90	95	105	110	122				
Temperature	A-Factor	1.22	1.07	1	0.75	0.6	0.28				

Calculation: Corrected Flow = User Flow Rate ÷ P-Factor ÷ T-Factor ÷ A-Factor. Select dryer that meets or exceeds corrected flow capacity.

Example: User's Conditions: 55 SCFM/ / 85 psig / 150°F inlet / 105°F ambient

Solution: Corrected Flow = 55 SCFM \div .93 \div 1 \div .75 = 78.8 SCFM. Size to model HTB080.

* Average kilowatts per hour of dryer operation at full rated capacity.

1302 Goshen Parkway West Chester, PA 19380

Phone: 610-692-9100 800-888-2323

Fax: 610-692-9192 Web: www.zeks.com

Specifications, illustrative materials and descriptions contained herein were as accurate as known at the time this publication was approved for printing. The company reserves the right to change specifications, discontinue models, equipment or design without notice and without incurring obligation. The information set out in this brochure is for preliminary information only and is not intended to constitute any representation or warranty by ZEKS to potential customers or to form the basis of a contract with any customer.